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NOMENCLATURE 

gravitational acceleration ; 
local heat transfer coefficient at solid-liquid 
interface; 
thermal conductivity of liquid phase; 
thermal conductivity of solid phase; 
local Nusselt number, hx/k ; 
normal to interface; 
Prandtl number; 
local Rayleigh number, [gjI(T, - T*)x’/v*]Pr; 
radial coordinate; 
radius of cooled tube ; 
temperature; 
wall temperature of containment vessel; 
wall temperature of cooled tube; 
fusion temperature; 
temperature outside of boundary layer; 
axial coordinate measured downward along 
cooled tube. 

Greek symbols 

!: 
coefficient of thermal expansion ; 
local thickness of frozen layer; 

V, kinematic viscosity. 

INTRODUCTION 

IT IS NOW well established that natural convection plays a key 
role in both freezing and melting processes [l]. In the case of 
freezing, natural convection occurs in the unfrozen liquid into 
which the solidification front advances, provided that the 
temperature of the liquid exceeds the phase-change tempera- 
ture. For melting, natural convection will occur in the liquid 
melt, except, perhaps, for very thin melt layers where heat is 
transferred by conduction alone. 

For either freezing or melting, the liquid-filled volume in 
which the natural convection takes place is not of elementary 
shape (such as, for example, rectangular or annular en- 
closures). The non-elementary nature of these liquid volumes 
is related to the fact that at least one of the boundaries of the 
volume is the phase-change interface. In the presence of 
natural convection, the interface is, generally, a curved surface 

which does not coincide with a coordinate surface (e.g., a 
surface where one of the coordinates is constant). Another 
feature of the phase-change interface is that its shape may 
change with time as freezing or melting progresses. As a 
consequence of the shape of the liquid volume, it appears that 
the heat transfer coefficients needed for the analysis of 
natural convection-affected phase change cannot be taken 
directly from the literature on natural convection in single- 
phase systems where relatively regularly shaped domains 
have been considered. 

Natural convection heat transfer coefficients specific to 
melting have been investigated experimentally to a moderate 
extent and, aside from the recent experiments of [2], this work 
has been brought together in [I]. In addition, numerical 
solutions for the conjugate conduction-natural convection 
problem associated with melting about a vertical cylinder 
have been carried out [3,4]. On the other hand, as is apparent 
from [l], there is a paucity of work on natural convection 
heat transfer coefficients related to freezing. 

The present paper reports on natural convection heat 
transfer coefficients measured in experiments on freezing 
about a cooled vertical tube which is situated in a liquid 
phase-change medium that is maintained at a temperature 
above the fusion value. 

THE EXPERIMENTS 

The apparatus used for the experiments is an adaptation of 
that employed in an earlier study with different obiectives r51. 
In order to facilitate the subsequent presentation and iii- 
cussion of the results, it is useful to give a brief description of 
the apparatus here. 

Figure I is a schematic drawing of the apparatus with a 
data run in progress. The main components of the apparatus 
are : (1) a cylindrical containment vessel for the phase-change 
medium, (2) a constant temperature water bath which serves 
as an isothermal environment for the containment vessel and 
which maintains the surface temperature of the vessel at a 
constant value T, that is higher than the fusion temperature 
T*, and (3) a circular tube which is positioned along the axis 
of the containment vessel during a data run and which is 
water-cooled so that its surface temperature T, is lower than 
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the fusion temperature T*, thereby causing freezing to occur. 
As seen in the figure, the lower part of the containmen: 

vessel is fitted with a disk of Styrofoam insulation whose 
purpose is to avoid thermal interactions between the lower 
portions of the freezing specimen and the bottom wall of the 
containment vessel. Thermal isolation at the otherwise open 
top of the vessel is achieved by the use of a Styrofoam cap. The 
containment vessel is supported and positioned in the water 
bath by a lip which extends radially outward at its upper end ; 
the lip rests on the plexiglass plate which covers the top of the 
constant temperature bath. 

The key dimensions of the apparatus are as follows: (1) 
inner diameter of the containment vessel, 152cm (6 in.); (2) 
depth of the liquid phase-change medium in the containment 
vessel with the water-cooled tube in place, 11.56 cm (4.55 in.); 
and (3) outer diameter of the cooled tube, 2.49 cm (0.982 in.). 
The phase-change medium is 99% pure n-eicosane paraffin 
with a fusion temperature of 36.4”C (97.5”F). 

In preparation for a data run, the containment vessel and 
its charge of liquid paraffin were placed in the constant- 
temperature bath to attain thermal equilibrium at the pre-set 
temperature T,. During this period, the water-cooled tube 
was absent from the containment vessel, and chilled water at 
temperature T, was circulated through the tube. Once the 
liquid phase-change medium had attained a uniform tem- 
perature T,, and the cooled-tube temperature was equal to 
T,, the tube was inserted into the containment vessel and the 
data run initiated. 

During any data run, the wall of the containment vessel 
was maintained at a uniform temperature T, > T*. As a 
consequence, a natural convection flow was set up in the 
liquid paraffin, the circulation pattern of which is shown 
schematically in Fig. 1. Owing to the fact that both To and T* 
are maintained at fixed values throughout the run, the natural 
convection flow, once initiated, is sustained (i.e. it does not 
die away as would occur if the wall of the containment vessel 
were insulated). 

It was demonstrated in [S] that the presence of sustained 
natural convection in the liquid region retards the freezing 
process and ultimately causes it to terminate. Thus, after a 
certain time, which depends on the magnitudes of (T,, - T*) 
and (T* - T,), there is no further freezing, even though the 
tube wall temperature is lower than the fusion temperature. 
Larger values of (T, - T*) create stronger natural con- 
vection circulations and, therefore, give rise to thinner frozen 
specimens. On the other hand, larger values of (T* - 7,) 
increase the radial heat conduction in the solidified material, 
which leads to thicker specimens. 

OBJECTIVES AND OPERATING CONDITIONS 

The experiments were aimed at exploring certain features 
of the natural convection heat transfer coefficient at the solid- 

WATER-COOLED 
r-?/TUBE 

FIG. 1. Schematic of the apparatus with a data run in progress. 

liquid interface. The first objective was to determine how the 
heat transfer coefficient at a given axial station responds to 
changes of the frozen layer thickness when the thermal 
driving force for natural convection, (T, - T*), is held fixed. 
A highly desirable outcome of such a determination would be 
to find that the coefficient is insensitive to the local layer 
thickness. This would legitimize the use of a time-independent 
local heat transfer coefficient in the analysis of the timewise 
growth of the frozen layer in the presence of sustained natural 
convection in the liquid. 

To fulfil the aforementioned objective, three series of data 
runs were made, all with an identical value of the natural 
convection driving force (7, - T*) equal to 5.56”C (10°F). 
The three series were respectively characterized by frozen 
layer temperature differences (T* - T,) equal to 8.33, Il.11 
and 16.67”C (15,20 and 30°F). In each series, data runs were 
made for a succession of increasing run times, and this was 
continued until no further growth of the frozen layer was 
detected. 

A second objective of the study was to attempt to relate the 
experimentally determined heat transfer coefficients to litera- 
ture values for single-phase natural convection. 

RESULTS AND DISCUSSION 

To illustrate the manner in which the thickness of the 
frozen layer varies with time at various axial stations, Fig. 2 
has been prepared. This figure corresponds specifically to the 
series ofdata runs characterized by (T* - T,) = 11.11 “C and 
(T, - T*) = 5.56”C, but it is also typical of the other series. 
The x coordinate measures axial distances downward from 
the top of the frozen specimen, while S is the local thickness of 
the layer (the thickness measurements were made with a 
sensitive dial gage). As expected, the thickness of the frozen 
layer increases rather rapidly with time at first, but the rate of 
increase slows as time passes and, finally, a terminal thickness 
is attained. 

The terminal thicknesses for all three series of data runs 
have been plotted in Fig. 3 as a function of the axial 
coordinate, This figure affirms the statement made earlier in 
the paper that the presence of natural convection in the liquid 
gives rise to curved interfaces which do not coincide with 
coordinate surfaces. It may be seen that the thickness of the 
frozen layer increases in the direction from the top to the 
bottom of the specimen. Since thinner frozen layers cor- 
respond to higher natural convection heat transfer 
coefficients [5], Fig. 3 indicates that the coefficient decreases 
from the top to the bottom of the specimen, which cor- 
responds to the direction of fluid flow along the interface (Fig. 
1). Since thenaturalconvection boundary layer grows thicker 
in the direction of fluid motion, the decrease of the heat 
transfer coefficient is reasonable. It may also be noted in Fig. 3 
that the frozen layer thickness corresponding to the largest 
value of (T* - T,) is almost twice that for the smallest value 
of (T* - T,). 

When freezing ceases, the local convective heat transfer 
from the liquid to the interface is equal to the heat transfer 
coroucted radially t across the frozen layer, provided that 
axial conduction in the layer can be neglected. The local 
convective flux can be expressed as h(T, - T*), where h 
denotes the local heat transfer coefficient. In considering the 
radial conduction, cognizance must be taken of the tempera- 
ture dependence of the thermal conductivity k, of the solid 
[6]. Ifit is assumed that k,can be represented as a linear form 
(i.e. k, = a + bT) over a small range of temperature, then the 
radial heat flux at the interface can be written as 

k,(T* - Tw)/(r, + 6)ln (1 + S/r,). (1) 

where k,,is the thermal conductivity evaluated at T = $(T* + 
T,), rw IS the radius of the cooled tube, and 6 is the local 

t This assumes that H/&I at the interface (n = normal) is 
essentially equal to ST/h, as will be verified shortly. 
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FIG. 2. Variation of the thickness of the frozen layer with time 
atvariousaxialstations;(T* - T,) = ll.ll°C,(T, - T*) = 
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FIG. 3. Terminal thickness distributions. 
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thickness of the frozen layer. If the heat flux expressed by 
equation (1) is equated to the local convective heat flux, there 
follows 

h = I;,[(T* - T,)/(T, - T*)]/(r, + @In (1 + 6/r,). (2) 
Numerical results for the local heat transfer coefficient h 

have been evaluated from equation (2) by introducing the 
measured terminal thicknesses 6 along with the appropriate 
values of (T* - T,) and (T, - T*) and with & vaiues from 
f61. These results are listed in Table 1 as a function of the axial 
L > 

coordinate x for each of the three series of data runs. For 
compactness, the series are identified as 1, II, and III where 
these symbols are defined at the bottom of the table. Also 
listed in the table are values of the local Nusselt number 
defined as Nu, = hx/k, in which the thermal conductivity k of 
the liquid is from [7]. For reference purposes, it may be noted 
that the results ofTable 1 correspond to a Prandtl number Pr 
= 60.5 and to a Rayleigh number Ra, at, say, x = 10.16 cm 
(4 in), equal to about lo*. 

Examination of the table shows that at any axial station x, 
the heat transfer coefficients are virtually the same for the 
three cases, with the maximum deviations of l$% being well 
within the accuracy of the experiments. Thus, Table 1 
demonstrates that the terminal heat transfer coefficients are 
independent of the layer thickness at any given axial station 
and at a fixed thermal driving force (T, - T*). 

When the rate of growth of the frozen layer (i.e. &l/at) is 
very slow, as is true over almost all of the freezing period, then 
it is reasonable to expect that the natural convection in the 
liquid region will be quasi-steady, that is, at each moment, an 
instantaneous steady state exists. Thus, as far as the liquid is 
concerned, it does not sense any difference between the case of 
a moving interface and the case of a stationary interface. As a 
consequence, the conclusions about the influence of 6 on the 
heat transfer coefficient, which have been drawn from ter- 
minal state (i.e. steady state) results, also apply to the quasi- 
steady situation. 

From the foregoing, it follows that for the case of sustained 
natural convection in the liquid, it is permissible to use steady 
state heat transfer coefficients for the analysis of the mfjor 
portion of the freezing period. This outcome may be regarded 
as the most interesting finding of this study. 

It is appropriate to explore briefly the reasons for the 
insensitivity of the heat transfer coefficient h to the layer 
thickness 6. If h were to be sensitive to 6, the sensitivity would 
be caused by the following factors: (1) changes in transverse 
curvature, (2) changes in longitudinal curvature, and (3) 
changes in the size of the annular gap between the solid- 
liquid interface and the wall of the containment vessel. The 
transverse curvature effect for natural convection boundary 
layer flow along a vertical cylinder was evaluated in [8] for a 
wide range of Prandtl numbers and Grashof numbers. By 
interpolating in Table 1 of [8] and using the operating 
conditions of the present experiments, it was estimated that 
the transverse curvature effects were, at most, in the l-2% 
range. 

To assess possible effects due to longitudinal curvature, the 

derivative &?/2x was locally evaluated from the measured 
data for 6 vs x. From these, it was found that the maximum 
inclination of the interface relative to the vertical was about 
10”. An estimate of the main effect of longitudinal curvature 
can be obtained by replacing the gravitational acceleration g 
with g(cos Q), where 0 is the inclination angle. Furthermore, 
the heat transfer coefficient responds to the gravitational 
acceleration approximately as g”4. Then, since (cos 10”)’ ‘4 = 
0.996, it appears that longitudinal curvature effects are fully 
negligible. 

The next issue relates to the possible effects of changes in 
the size of the annular gap between the solid-liquid interface 
and the wall of the containment vessel. In the absence of the 
frozen layer, the radial gap between the cooled tube and the 
wall of the vessel is 63.5 mm. Thus, the gap which remains at 
the termination of freezing is determined by subtracting the 6 
values of Fig. 3 from 63.5. From this, it is seen that for the 
three cases considered, there are moderate differences in the 
various gap sizes at any given axial station. 

In exploring the importance of these differences, the 
literature was examined with a view to finding natural 
convection heat transfer results for vertical annular en- 
closures with given temperatures on the inner and outer 
cylidrical surfaces. Some results are available in [9, lo], but 
the maximum Rayleigh number considered there is about two 
orders of magnitude smaller than that of the present experi- 
ments. More recent references, e.g. rll], deal with vertical 
annular gaps where the end faces are?hermally active rather 
than the cylindrical surfaces and, therefore, are not applicable 
to the present situation. In lieu of other information, some 
guidance may be taken from the authors’ own work on 
natural convection in melt cavities r2.121. There. it was found 
that the natural convection hea; transfer coefficient was 
essentially independent of the cavity size for inter-wall dimen- 
sions on the order of those of the present experiments. 

The foregoing discussion serves to buttress the experimen- 
tally encountered insensitivity of the heat transfer coefficient 
to the thickness of the frozen layer. It still remains, however, 
to justify the neglect of the difference between the normal and 
radial temperature derivatives at the interface, as employed in 
the derivation of equation (2). In this connection, it is readily 
shown that 

aTian = [i + (aiyaX)y(a7-~ap), (3) 
From the measured values of 6 vs x, the factor multiplying 
dT/& was evaluated. At almost all axial stations, the 
deviation of this factor from one was under 1%; at x = 
10.16 cm (4 in.), values as large as l& were encountered, but 
the differences between the three cases (I, II, and III of Table 
1) were less than &. In the light of this, it is justifiable to 
neglect the differences between the radial and normal 
derivatives. 

It is appropriate to attempt to relate the heat transfer 
coefficients and Nusselt numbers of Table 1 with literature 
information. The geometrical configuration which, in the 
available literature, most closely approximates the shape of 
the liquid region of the present experiments is the vertical 

Table 1. Measured values of h and Nu, 

G) 

h 
(W/m’ - “C) Nu, 

I II III I II III 

3.81 60.7 61.3 61.6 15.2 15.3 15.4 
5.08 56.3 56.4 56.7 18.8 18.8 18.9 
6.35 52.8 52.4 52.5 22.0 21.8 21.9 
7.62 48.7 49.1 48.3 24.4 24.6 24.2 
8.89 44.2 44.1 44.1 25.8 25.8 25.7 

10.16 38.5 38.4 38.8 25.7 25.6 25.9 

I, II, III + (T* - T,) = 8.33, 11.11, 16.67”C. 



Shorter Communications 297 

concentric annulus. However, as already noted, the published 
heat transfer results for the annulus are confined to Rayleigh 
numbers that are smaller than those encountered here. 

Although they may not be strictly applicable, it was 
thought that the heat transfer coefficients for an isothermal 
vertical plate might form an interesting basis of comparison 
with the present data. In this connection, it is necessary to 
take cognizance of the fact that the vertical-plate results are 
based on the temperature difference (T, - T*), where T, is 
the temperature of the fluid outside the boundary layer. In 
contrast, the present h values are based on (T, - T*). With 
this in mind, the classical vertical-plate Nusselt number 
prediction, specialized to Pr = 60.5 by interpolation in Table 
1 of [13], can be written as 

Nu, = 0.486Ra;‘4[(T,, - T*)/(T, - T*)15“’ (4) 

where both Nu, and Ra, correspond to (T,, - T*). 
In applying equation (4) to the present situation, T, will be 

interpreted as the temperature of the liquid which lies 
between the boundary layers which respectively flow upward 
along the wall of the containment vessel and downward along 
the solid-liquid interface. Measurements of T, at mid-height 
yielded a value (T, - T*)/(TO - T*) 5 0.85, so that the 
numerical constant multiplying Rail4 in equation (4) be- 
comes equal to 0.397. 

When equation (4) is evaluated at the successive x values 
listed in Table 1, the corresponding Nu, values are 19.2,23.9, 
28.3,32.5,36.4 and 40.3. While these results are generally high 
compared with those ofTable 1, the level ofagreement is quite 
satisfactory when account is taken of the significant geometri- 
cal differences between the systems being compared. 
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